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AnsTRACT. This note is devoted to study sufficient conditions for stabilizsation of the
difference }_ij?o [z, £} —v(z, t}l = 0, £ € § — nets, where u{z, t} is solution of the Cauchy
problem for parabolic equation which is definite on § x [0, +00), § ~ nets in BV and
v{x, 1} is solution of the Cauchy problem with averaged constant matrix which is definite
in all point x € EV, ¢ > 0.

1. Definitions and the statement of the problems. In the Euclidean space E¥
(N > 2) we counsider the net 5, which is a union at all of the lines, parallel to coordinate
axes, aud knots of network (ny,ns,... ,ny), n; € Z, (¢ = 1,...,N). From this it follows
that S is a union of edges of a unit cubes [ = {i <z <i+1,:€ %, k=1,... ,N}
Under p we define the linear Lebesque meagure on S, (that is u4 is linear measure on the
-edges of cubes), with normalizing coefficient 1/N.

In the half space {t > 0} = %:c € §,t > 0} we consider the Cauc}zy problem for
parabolic equations of dnvergence

2 = div (afe) V), (=) € {2 > 0},

'alt_w = w(z),:c €8

where we assume that the real function a(z) is defined on S for all £ > 0 and is perdec
on each variables with period 1 and satisfies the condition

-}\-ga(z}gz\, A>0, zeEN. @)

The symbol V desinate here the differential operator on the net S, which is coincident
with 8/8z; on lines z; ({ = 1,... , N} parallel to axis z;.

Also we assume that the mztxal fanction :p(w) is definite on the net S an& is bounded
fanction on 5.
4 The Cauchy problem (1) we undetstanc! in usual wea.k sense, t}xat is in sense of integral
identity:

(1)

f f ul dpdt + f Plehn(z,0) du = f f (aVu,Vr;)dpdt (3;)'

for all fnnctxons n(z t)e C&“({t > 0}) where functzon u(z,t) is definite on {t > 0} and
belogning to L2{S % [0, T}, du - dt} YT > 0, and Vu(z,t) € L*{S x [0, T),dp - dt} VT > 0.
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The solutions of the problem (1) we takes from class of uniqueness, that is solutions is
bounded in each strip {0 <t < T} = {$ x (0,7}

2. Example. K a(z) = 1, N = 2, then the problem (1) we can interpret in the
following equzva}ezzce sense
Ju

o =0u (@b)e {t >0},

‘ul =p(z), z€S5,

Ea

(1)

where we assume that

1) § is the usunal square net on the plane E* with natural linear measure pufi < z; <
i+ 1,7 < 22 <7+ 1] on edges of square;

2) u{z,t) is continuous function on net 5 together with knots (ny,n2}, n: € Z;

3) on horizontal and vertical units function u{z, #) have first and second derivative, with
is square integrable.

4) derivative du/dr; {on horizontal units), du/dz, (on vertical units) they can have
discontinuity on nodes of network, but a jump of derivative du/dz; + jump of derivative
du/dzs = 0 in each nodes of network.

Under this conditions we have, that

( £
“— on horizontal unit, ¢ > 0,
Ju dz?
Bt Au = du
$ =~ on vertical unit, ¢ > 0, {1

ut=‘P($)1 z €S,

.

@(z) is bounded initial function on net S.
For this definition of Laplace operator A on net § see [1].
Together with problem (1) we consider usual Cauchy problem

0 _
?_}jmeouo} (2,8):z2cEY, t>0
ot

. (4)
of _ = _
u imo“tp(z)_’ z € BY,

' N o '
where L% = Y a%0%/(8x:0z;), lafllwxny — so called averaged matrix with constant

B =)
coefficient [2], §(z) — is bo:mded initial function on E¥.
The averaged matnx a’ = ﬂa ,[I N« is also simmetric and satisfies the elliptic conditions

*15!’ < Z a6k S AP,

t4=1

The initial function @{z} in (4) is fulfillment of initial fnnct;on t,a(a:) in (1) on S.
We assume that fulfilment function $(z) z € BV, is bounded and satisfies conditions

[e@ae)= (e )
o o : '

oneachcell [F = {i <2, <i+ k=1,...,N, i € Z}.
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We have the following assertions

THEOREM 1. The solutions of the Cauchy problems (1}, (4) satwﬁcs the following prop-
erty: exist the limit of difference

_t]ffaﬂo(“(z}t) - u’(,1)) =0, (6)
oneachz € 8.

From this closeness theorem we can to obtain the criterium for stabjlizations of the
solutions of the Cauchy problem (1).

hm w{z,t) =0, x(ﬁ-s

400
from well known pointwize criterium of stabilization of the solutions of the Cauchy prob-

lem (4).
lim «%z,8) =0, z¢SCEY

(se [3]-16))- o

THEOREM 2. If the fulfilment function @{z) in ({) is connected with initial function p(x)
in {1) by conditions (B), then the solulions u(z,t) of the Cauchy problem {1) stabilizes on
S .

}_i,,m uwlz, t) =0, z€S
of and only if the following limit of ellipcoidal averaged value of initial function p(z) exist

/ oly) d() =0,

{Byy)<R*

where B — in inverse matric for averaged matrm; a®, N~ is volume of the inut ellipsoid
in BY,

3. Ontlme of proofs. For fixed ¢ > 0 we consider the compressed net S, with
variables z/¢, z € § and definite the Cauchy problem for parabolic equation (1)
8‘"-8

5= div (a‘(m)Vu‘), (1.)

‘with initial function

e(m, O) - fg(z)} f(z) € c{c;o(EN)
Applying the real Laplace transform to solution of the problem (1,) on variable £ > 0, we
obtain following problem in W*2(EN, du©)

: ~div(a*(z)w’) +pu* = f°, p>0, (7)
where W‘"(EN du*) is a closure of functions w € C°(EV) in the norm '

_ 1/
wllwra@y aue) = [ f (Iw‘l"HVﬂf‘i’)d#‘] -

and w¥(z, p) = f e"’*u‘(:c tydt,p>0 the Laplace transform of function u*(z, t). Appiymg

the weJi»kaown average theorem 6.3 from [1], we obtain, that the solution w® of the
problem (7) satisfies the following limit relating: for any 5 € C3° (EV) the limit exists

© i [ nepw e i = [ (e ) do @

EN
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g e

im [ (e, o) du* = [ (e, )P dz @)

'where w° is the solution of the average problem in W'?*(EY, dz)

~div (@) +pul = £, (10)
N i

where a is average constant matrix, f° € C(EV).
After that we can to apply the well-known Trotter-Kato theorem (7], w}nciz imply that
the following limit exist

ity [ n(e)ut(e)du = [ nfe)s®(e,t)da, v & O (BN (1)
EN EN '
E}g}i /[u‘(m ) du® = /[vﬂ(:c £))? dz, vn € CP(EYN) (12)

for any fixed ¢t > 0, whexe vY is the solutwn of the Cauchy problem (4) with average
matrix a® and initial function f° € CF(EY).

This is main property whish we can obtain from standard average theory. But in
order to prove theorem 1 we must to bring some refinements in average theory. We have
following result

THEOREM 3. If initial function f in the Cauchy pmbfe‘rr.z (1c) satisfies limit condition
e € L=(EY du®) and the following limit exist

lim ] Fam@d = [ (e ds (13)
' S
for any n(z) € CE(EN), then the following limit exist
I [ Wiz tne) e = [ n)dz, ¢>0 )
EN

Jor any 1}(3:) € C’g"(EN ), where w%(2,t) is the solutions of tke Cauchy problem (), t >0,
with initial function u %(z,0) = f(z):

65‘; o, W)= fe(x) (15)

Proof of the theorem 3. Let us assume that limit conditions (13) holds for any function
n(z) € C§° (E¥). From hypothesis | f‘(z)| < M it follows that exists subsequence {f},

which is weakly convergence to f° ( = f° weakly in L’(EN dp®)}.
Now by appiayzng Green formula for solutions of the Cauchy prob

Bu* . _
S =, vl =) BN
‘and . ' | | .
OV oe el _ oo o
| 5 = I =0 (1)
where n(z) € C&(EN), we have, that fo]}owmg equality - _
[F@an@ s = [veured, w0

EN BN
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holds. ‘P&s_sing ¢ — 0 in the left of (18) we have o = o
| tiy [ (ot it = [ (e, ton(e) do, (19)
EN

: EN _
where uw*(z,t5) — some limit point (in weak seance) of sequence u(z,%). Applying the .
Trotter-Kato theorem [7] in right of (16) ‘we have that following hmxt exist

jf}él+ hd (zatﬂ)f‘(x) dlf = /vﬁ(x’ tﬁ)fg(x) dz, (20)

e s _

where v%(z,t} is the solution of the average Cauchy prcbiem (27) From (19}, (20) it
follows that for any 5{z) € CP{EN)

/u"(:c,tg)q(a:)dz = jn{}.(:c,to)fe(a:_) dz. | (21)
Applying Green formula in the right side of (21), we have

[vatnteis= [ e i) d, (22)

EN EN

for any 1}(:1:) € C&{E¥), 5 > 0. From last equality it is easy to see that
u'{z, tg}«-‘!!. (=, ta) to >0

where u’(%,to) is the solutions of the Cauchy problem (15).
Theorem 3 is proved.
The following statement play very important role in the proof of theorem 1.

LeMMA 1. If initigl fulfillment function $(z) in the Couchy problem (4) and initial Sfunc-
tion p(z) in the Cauchy problem (1) sotisfies property (5), than limit ezist '

ty [ = (oo
BN BN o
if and only if the following limit exist | o |
| b f ''?(“5)_9?5*‘(«":)_afé= f n(z)e(z)dz ()
EN . L . w .

N
Jor any n(z) € CF(RN). '

The proof of lemma 1 is stxa;ghforward and is leﬁ. to readm' For proof theorem 1 we .
consider two Cauchy problem

dut a ' |
at hd Lﬁt, kL Lmﬁ = ‘P (z)_‘! ' : . (25)
5v* e _ _
5 =L v =) (26)

where ¢°(z) is some fulfitment of initial funct:on ¢(z), and conditions (5) are holds. Now

we put £ = :}- t > 0. From condition (5) and lemma 1 it follows that the sequances

{¢*(2)} and {¢*(z)} have the same weak l.umt
©° e I g0 ©® weakly in L2(E¥, dp*),

[ i)

$* —— ° weakly in L2(E¥, du*).



1t is known [8} that solution {u®(z,t)} of the Cauchy problem satisfies uniform Holder-
conditions, with constant which does not depend on . From this condition and theorem 3
it follows that following Hmit

u:k(a 1) =4"(0,1) 5 (27)

exist. Now we znust to apply Po;sson formula for solutwn of the Cauchy problem .(26)
with constant coefficient, i. e.

v°(0,1) = /Kg($,e,l)(;7(€_13)d.’c
EN

where Ko{z,y,¢) is fundamental solutions of (28). Passing ¢ — 0 we have
lim 0¥ (0,1) = w°(0, 1) (28)

From (27), (28) it follows that theorem 1 is proved.

Proof of the theorem 1 is omitted, and it follows straightforward from theorem 1 and
well known criterium of stabilization of the solution of the Cauchy problem for heat
equation [3].

After this proof the theorem 2 may be made very easy as in the book [2].
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